

National Emergence

MINISTRY OF BUSINESS, Management Agency

The GeoNet and PositioNZ Continuous GNSS Networks: a geodetic infrastructure for Geohazards Monitoring

Elisabetta D'ANASTASIO (and many others) e.danastasio@gns.cri.nz

Outline

A little homage

- 1. Intro: What is GeoNet
- 2. **GNSS**: GeoNet and PositioNZ continuous GNSS networks
- 3. Events: GNSS for Event Response
- 4. Future: Future initiatives using GNSS data

Thanks to Chris and the organization for the invite!

"Covid impact" on seismic data

- lower ambient noise during lockdown
- observed using RSAM (Real-time Seismic Amplitude Measurement) from HBAZ GeoNet seismometer
- Similar observations around the world

From Van Wijk et al., JGR Solid Earth, 2021, https://doi.org/10.5194/se-12-363-2021

GeoNet, 20 years of monitoring geological hazards

GeoNet Sensor Network

Almost 1000 sensors! (from Raul Island to Scott Base)

- GNSS sites (196)
- Seismometers and acoustic sensors (391+31)
- Strong motion sensors and building arrays (315 + 18)
- Tsunami monitoring gauges (19)
- DART (8) *
- Cameras (12)
- Environmental sensors (12) *

* DART and Environmental sensors collection, processing and distribution currently under development

Sensor network metadata

- Robust metadata control process for scientific equipment changes
- version controlled database
- accessible to all end users (<u>http://github.com/GeoNet/delta</u>)

Modern Data Management System and data archive

- GeoNet Data moved to the cloud in 2018-2019
- Preparing for the future (cloud computing, data driven decision, artificial intelligence)

Data and products: from seconds...

seconds past origin time

GNS Science

Data and products: ...to days/months...

Medium/low-rate and campaign data

- Earthquake parameters
- Crater lake monitoring
- Volcano gas flux
- Webcams
- GNSS daily solutions

CC BY 3.0 NZ GNS Science

latest: 15.84 C (2020-09-17) min: 14.75 (2020-09-15) max: 27.87 (2020-06-30)

Data and products: ...to decades

Legend Magnitude ≥ 7 0000 6 - 7 5-6 4 - 5 3 - 4 2 - 3 100 - 200 ≥ 200

"Long term" data:

- Felt reports
- EQ catalogue (~627,400)
- Strong motion products
- Eruption history database
- Volcano alert levels and bulletins
- Landslide reports
- Long term ground deformation

GNS Science

Intro

GeoNet data used by NGMC to monitor geohazards

Established in December 2018

1**3**: 17 58

<u>00</u>: |7 58

National Geohazards Monitoring Centre Te Puna Mōrearea i te Rū

Photo: Holly Godfrey

GeoNet and PositioNZ GNSS networks

20 years of partnership between GNS, LINZ, EQC, Otago University School of Surveying through the GeoNet Project (now Programme).

Toitū Te Whenua Land Information New Zealand

GeoNei

GNS BCIENCE

GNSS

GeoNet and PositioNZ continuous GNSS networks

PositioNZ stations (37): GPS, Glonass, Galileo, BeiDou, QZSS https://www.linz.govt.nz

Toitū Te Whenua Land Information New Zealand

Contributing to **IGS network (7)** <u>www.igs.org</u>

GNSS stations monument types

)

GNSS

GNS Science

Wyatt/Agnew Deep Braced Monuments construction

Original design by Unavco, high quality GNSS monument:

GNSS

- well anchored to the ground
- up to 10 m foundations depth
- stainless steel
- solid and durable antenna mount

Rotorua Highlands Station RGHL				
North anchor	0.0	to	3.5	Soft brown ASH
	3.5	to	8.0	Fractured IGNIMBRITE
South anchor	0.0	to	4.7	Soft Brown ASH
	4.7	to	8.0	Fractured IGNIMBRITE
East anchor	0.0	to	3.9	Soft brown ASH
	3.9	to	7.5	Fractured IGNIMBRITE
West anchor	0.0	to	4.1	Soft brown ASH
	4.1	to	8.5	Fractured IGNIMBRITE
Centre anchor	0.0	to	4.2	Soft brown ASH
	4.2	to	9.5	Fractured IGNIMBRITE

GNSS data products: where to find them

RINEX and raw data

https://www.geonet.org.nz/data/types/geodetic https://data.geonet.org.nz/gnss

- 1s real time GNSS streams (~20% of sites) https://www.linz.govt.nz/data/geodetic-services/positionz/positionz-real-time-service
- Daily position time series
 to visualize: <u>https://www.geonet.org.nz/data/gnss/map</u>
 to download: FITS https://fits.geonet.org.nz/api-docs/

* 1 Hz data can be manually retrieved from sensors in the field upon request to support surveying

Back to main site

PositioNZ-RT – Current Status

For information on using the PositioNZ-RT real time service visit the main PositioNZ-RT page.

Statistics are updated every 10 minutes. To ensure the latest numbers are being displayed please refresh your page. Map locations are approximate, and may be several hundred metres out of position.

PositioNZ Real Time network

Real time service:

- 53 streaming stations
 - all 37 PositioNZ stations (including Scott Base in Antarctica!)
 - 10% of GeoNet stations (16)
- Streaming of 1s GNSS data in real time
- ~1000 individual connections at any given time
- less than 1.5 seconds latency on average

GNSS

PositioNZ Real Time users

• User subscriptions statistics (courtesy of S. King, LINZ)

• Individual connections (May-June 2021)

GNS Science	Future	GNSS	Intro

Recent GeoNet projects in partnership with LINZ

- GNSS data collection modernization (2017-2018)
- GNSS sensor network upgrade and vertical reference marks measurements (2019-2020)
- PositioNZ-RT streams renaming and users migration to align with IGS standards (2020-2021)

GNSS

How GeoNet and PositioNZ GNSS networks support response to large geohazard events

Events

Kaikoura 2016 earthquake, M 7.9

10,000 +

15,840

online reports within the first hour

250 million

hits to GeoNet website on 14th November

19,000+ 💦

aftershocks

landslides

Kaikoura 2016 earthquake, time machine

GNSS network in November 2016

GNSS "kinematic displacement", produced (manually) ~2hr after the event. Earthquake magnitude was still poorly constrained by available data and modelling

GNS Science

Earthquake

Events

Kaikoura 2016, coseismic deformation

Coseismic displacement measured by GNSS stations:

- "dynamic", every 0.1sec (plots on the left)
- "static", from daily solutions (map on the right)

In the weeks following the Kaikõura event our technicians were busy installing new instruments in the region to help us better locate the many aftershocks, and see how the land was behaving/ moving. This included adding both temporary and new permanent stations to our national network.

NEW SITES

GNSS with weak and strong motion

CLRR CRSZ

CRSZ Clarence River Middle Hill

NEW TEMPORARY SITES

Temporary GNSS with strong motion

Glen Orkney (temporary station)

ADDITIONS TO EXISTING SITES Strong motion added to regional seismic and sites upgraded

Kekerengu

KEKS

▲ GLDB **A**NLSN Nelson WAILAGARGIN **WEST** A KAIK A HOKI **LKTA**

Earthquake

Kaikoura 2016, GeoNet Network Team rapid response

6 new GeoNet GNSS stations sites installed within a week after the event!

Events

Kaikoura post-seismic ground deformation

GNSS stations in epicentral area used to better define post-seismic deformation. Important to study earthquake source and improve monitoring of aftershock sequence.

* Temporary sites were made permanent within the next year, and co-located for at least a month with temporary deployments

Earthquake

Kaikoura 2016: slow slip triggering

earthquake triggered a slow slip event on the Hikurangi subduction zone

Only observed by GNSS stations

after Wallace et al., NatGeo 2017

Earthquake

Kaikoura 2016, GNSS streaming enabled to support science and rebuild efforts

- Where possible (depending on communication links), GeoNet stations in the epicentral area have been added to the PositioNZ-RT network
 - Clarence river (CLR1-CLRR)
 - Cape Campbell (CMBL)
 - Wairau Valley (WRA1-WRAU)
- GNSS streams have supported scientific studies and rebuild efforts
 - Map faults' surface traces
 - Acquire LIDAR images in the epicentral area
 - Support the restoration of road and rail infrastructure
- Those GNSS streams are still available (and used)

STR; CLRR00NZL0; Clarence River; RTCM 3;1004(1),1012(1),1006(10),1008(10),1013(10),1033(10);2; GPS+GLONASS; GeoNet; NZL; -42.14;173.81;0;0; Trimble NetR9; none; B; N; 9600; Kaikoura eq response STR; CMBL00NZL0; Cape Campbell No. 2; RTCM 3;1004(1),1012(1),1006(10),1008(10),1013(10),1033(10);2; GPS+GLONASS; GeoNet; NZL; -41.75;174.21;0;0; Trimble NetR9; none; B; N; 9600; Kaikoura eq response STR; WRAU00NZL0; Wairau Valley; RTCM 3;1004(1),1012(1),1006(10),1008(10),1013(10),1033(10);2; GPS+GLONASS; GeoNet; NZL; -41.59;173.59;0;0; Trimble NetR9; none; B; N; 9600; Kaikoura eq response

Volcano monitoring

- GeoNet monitors 12 volcanoes/volcanic fields in New Zealand, including Raoul Island
- dedicated high density networks with co-located scientific equipment
- GNSS is used to monitor ground deformation of volcanic areas
- GNSS data are interpreted in combination with other data types and analyses

Te Maari 2012: alternative use of GNSS data

- GNSS signal to noise ratio (SNR) can be used to confirm presence of ash in volcanic plumes
- Te Maari 2012 eruption data

Port Hills, Christchurch Landslide Monitoring

GeoNet installed and operated temporary GNSS stations to support scientific studies. Landslide projects supported so far:

- Port Hills (Christchurch)
- Utiku
- Fox Glacier

- 2010-11 Canterbury earthquake sequence, M > 5.5 earthquakes

Landslide

Landslide: Alpine Gardens Landslide (Fox Glacier)

Events

Tsunami: Kaikoura 2016 simulation

post-event simulation of earthquake source inversion using GNSS real time data

Tsunami

Crowell et al., 2018, <u>https://doi.org/10.1785/0120170247</u>

	Events	Future	GNS Science

post-event local tsunami modelling

GNS Science

2018-2023 programme: sea level rise

Together with other data, GNSS will support understanding of vertical deformation along New Zealand coastlines, crucial to inform sea level rise forecasting models

Ø

GNS

MINISTRY OF BUSINESS,

HĪKINA WHAKATUTUK

2020-2025 programme: Rapid Characterisation of Earthquakes and Tsunami

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT

HĪKINA WHAKATUTUKI

GNS

Last but not least....

Deprecation of GeoNet FTP server

FTP now deprecated by all internet browsers

GeoNet GNSS data are now distributed over HTTP: https://data.geonet.org.nz

Please contact me or <u>info@geonet.org.nz</u> if you want to be notified of the change happening and exact timeline

Grazie Kia Ora Thank you!

e.danastasio@gns.cri.nz

GeoNet MM

WHAT THE NUMBER OF DIGITS IN YOUR COORDINATES MEANS				
LAT/LON PRECISION	MEANING			
28°N, 80°W	YOU'RE PROBABLY DOING SOMETHING SPACE-RELATED			
28.5°N, 80.6°W	YOU'RE POINTING OUT A SPECIFIC CITY			
28.52°N, 80.68°W	YOU'RE POINTING OUT A NEIGHBORHOOD			
28.523°N, 80.683°W	YOU'RE POINTING OUT A SPECIFIC SUBURBAN CUL-DE-SAC			
28.5234°N, 80.6830°W	YOU'RE POINTING TO A PARTICULAR CORNER OF A HOUSE			
28.52345°N, 80.68309°W	YOU'RE POINTING TO A SPECIFIC PERSON IN A ROOM, BUT SINCE YOU DIDN'T INCLUDE DATUM INFORMATION, WE CAN'T TELL WHO			
28.5234571°N, 80.6830941°W	YOU'RE POINTING TO WALDO ON A PAGE			
28.523457182°N 80.683094159°W	"HEY, CHECK OUT THIS SPECIFIC SAND GRAIN!"			
28.523457182818284°N, 80.683094159265358°W	EITHER YOU'RE HANDING OUT RAW FLOATING POINT VARIABLES, OR YOU'VE BUILT A DATABASE TO TRACK INDIVIDUAL ATOMS. IN EITHER CASE, PLEASE STOP.			

https://xkcd.com/2170/

GNS Science